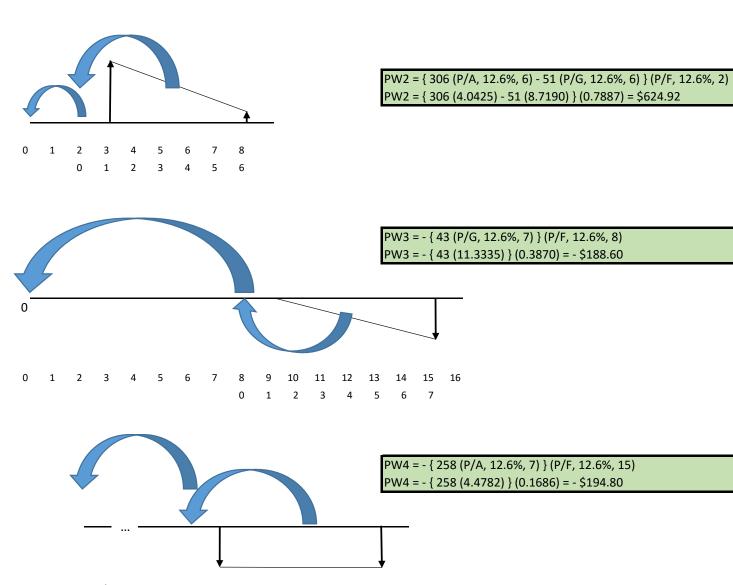

i	1+i
0.126	1.126

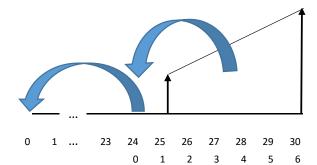
				I 1+I
IEGR 350: Engineering Economy				0.126 1.126
Fall 2015				
M. Salimian		ear Payment	•	n1(P/F,I,n) PW
	Payme 540	0 540 1 0	0 540 0 0	1.0000 540.00 0.8881 0.00
Assignment 3 Solution Key	Year 1 2 3 4 5 6 7 8 9 10	2 -382	0 -382	0.7887 -301.29
1. Plot the cash flow diagram based on the following set of payments.		3 306	51 306	0.7005 214.34
2. Find the equivalent annual payments for the problem.		4 306	51 255	0.6221 158.63
3. Find the equivalent arithmatic gradient series between years 8 and 14 with	Year 11 12 13 14 15 16 17 18 19 20	5 306	51 204	0.5525 112.70
A=\$125 for the project.	Payme -86 -129 -172 -215 -258 -258 -258 -258 -234 -258	6 306	51 153	0.4906 75.07
Requirements:		7 306	51 102	0.4357 44.45
Limit the use of (P/F, i, n); use (P/G, i, n) & (P/A, i, n) when possible.		8 306	51 51	0.3870 19.74
Use 12.6% interest rate, compounded annually.		9 306	51 0	0.3437 0.00
ose 12.0% interest rate, compounded annually.		10 0 11 0	43 -43	0.3052 -13.12 0.2711 -23.31
		11 0 12 0	43 -86 43 -129	0.2407 -31.05
First, let's analyze the transactions and find patters in them.		12 0 13 0	43 -172	0.2138 -36.77
At first glance it looks that we are dealing with		14 0	43 -215	0.1899 -40.82
4 individual transactions that will not fit into a known pattern, 3 arithmetic gradient		15 0	43 -258	0.1686 -43.51
series, and 2 annuities.		16 -258	0 -258	0.1498 -38.64
		17 -258	0 -258	0.1330 -34.31
		18 -258	0 -258	0.1181 -30.47
	A	19 -258	24 -234	0.1049 -24.55
		20 -258	0 -258	0.0932 -24.04
▲		21 -258	0 -258	0.0827 -21.35
		22 -258 23 -102	0 -258 0 -102	0.0735 -18.96 0.0653 -6.66
		23 -102 24 185	0 185	0.0580 10.72
		25 196	64 196	0.0515 10.09
0		26 196	64 260	0.0457 11.88
		27 196	64 324	0.0406 13.15
	0.126	28 196	64 388	0.0361 13.99
▼	\$565.06	29 196	64 452	0.0320 14.47
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19 20 21 22 23 24 25 26 27 28 29 30	30 196	64 516	0.0284 14.67
540 0 -382 306 255 204 153 102 51 0 -43 -86 -129 -172 -215 -258 -258 -258 -258	-234 -258 -258 -258 -102 185 196 260 324 388 452 516			565.06

It is always a good practice to check the value of present worth of the project with EXCEL using NPV function to get the exact value and then check your calculations against that result.


Present worth of the cash flow according to EXCEL is \$565.06.

Further analyzing the cash flow can reduce the calculations by combining two annuities. To do that, we can add and subtract 24 units to single transaction at year 19. We also have to address the transactions at year 15 and 9 that are joined between two different series. The re-drawn cash flow is presented below.

> Calculating present worth of all individual transactions PW1 = 540 - 382 (P/F, 12.6%, 2) + 24 (P/F, 12.6%, 19) -102 (P/F, 12.6%, 23) + 185 (P/F, 12.6, 24) PW1 = 540 - 382 (0.7887) + 24 (0.1049) -102 (0.0653) + 185 (0.0580) = \$245.30


245.3036

 624.9154

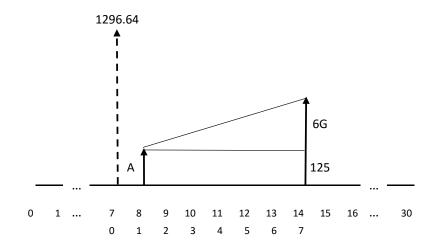
-188.6008

-194.7963

PW5 = { 196 (P/A, 12.6%, 6) + 64 (P/G, 12.6%, 6 } (P/F, 12.6%, 24) PW5 = { 196 (4.0425) + 64 (8.7190) } (0.0580) = \$78.32

78.32007

PW = PW1 + PW2 + PW3 + PW4 + PW5					
PW = \$245.30 + \$624.92 - \$188.60 - \$194.80 + \$78.32 =\$565.14					
Comparing to direct individual calculation result, we see a small difference of					
\$0.08 between Calculated PW value of \$565.14 and the EXCEL calculated value					
of \$565.06 which is due to the use of full decimals in EXCEL.					


A = P (A/P, 12.6%, 30) = \$565.14 (0.1297) = \$73.30

565.14

73.29866

Last part of the assignment is asking for an equivalent arithmetic series to the current cash flow between				
years 8 and 14 beginning with A = \$125. Thus we need to find the G value of the series.				
First we find the future worth of the calculated present worth of the given cash flow at year 7. Note that year				
7 will act as the year 0 for the gradient series.				
F (at year 7) = P (at year 0 for gradient series) = 565.14 (F/P, 12.6%, 7) = 565.14 (2.2949) = \$1296.94				

1296.94

We do not know whether G is positive or negative. But, it does not make a difference because in the	
calculations it will show its sign. We will find the present worth of the arithmetic gradient series and then set	
it up to 1296.64 to find G.	
1296.64 = 125 (P/A, 12.6%, 7) + G (P/G, 12.6%, 7) = 125 (4.4782) + G (11.3335) = 559.77 + 11.3335 G	
11.3335 G = 1296.64 - 559.77 = 736.87	559.775
G = 736.87 / 11.3335 = 65.02	736.87
G 750.07 11.5555 05.02	65.01699